Terza parte.
Vediamo una per una le fasi nel funzionamento del motore partendo dall’aspirazione.
Aspirazione o ammissione
La fasatura di aspirazione determina quanta “carica” (la miscela aria-benzina) deve entrare nel motore ma non solo, le distanze dell’apertura e della chiusura rispetto al pms e all’apertura di travasi e scarico influiscono molto sull’erogazione del motore.
Un esempio banale. Immaginiamo il motore spento con il pistone a pmi e spingiamo sulla pedivella: il pistone partendo dal pmi, inizia a salire e appena chiude i travasi e la valvola di aspirazione si apre (immaginiamo in questa fase il pistone come lo stantuffo di una siringa che sta aspirando da una fialetta), si crea nel carter pompa ovvero dove gira l’albero una depressione, aspirando attraverso il carburatore la miscela aria-benzina. Continuando nella rotazione dell’albero ad un certo punto l’ammissione si chiude, il pistone ha già iniziato la sua discesa e appena le luci di travaso si riaprono, la miscela a/b presente nel carter viene pressata e travasata (ecco perché si chiamano travasi) dal carter pompa all’interno del cilindro. Continuando a girare ancora il pistone sale comprimendo quanto aspirato e contemporaneamente salendo ricrea depressione nel carter aspirando altra carica, di sopra invece quando il pistone è a pms ha compresso la miscela aria-benzina, è scoccata la scintilla, avviene lo scoppio-espansione, il pistone viene spinto giù, entra dai travasi nuova carica, i gas combusti vengono espulsi, il pistone risale, comprime, scoppia e così via.
Togliete il piede dalla pedivella, il motore ora è in moto.
Stabilito come si sviluppa la fase di aspirazione nel motore vediamo cosa implicano i punti di apertura e chiusura.
Quando si deve aprire l’aspirazione? In teoria da quando il pistone salendo ha chiuso i travasi quindi la nostra “siringa” è nella condizione migliore per aspirarsi dentro la carica. In pratica invece tardando un po l’apertura rispetto alla chiusura dei travasi, prima che si apre l’aspirazione all’interno del carter si crea già depressione e all’apertura della valvola inizierà l’aspirazione in maniera più vigorosa, a tutto vantaggio del rendimento ai bassi e medi regimi. Viceversa anticipando l’apertura a prima che i travasi siano chiusi avremo il cosidetto incrocio ovvero il momento in cui aspirazione travaso e scarico si incrociano nelle loro fasi con vantaggi solo agli alti regimi.
Quando si deve chiudere la valvola? In teoria non appena il pistone ha terminato la sua corsa verso l’alto perchè se il pistone inizia a scendere e la valvola è ancora aperta, irrimediabilmente parte della carica aspirata sarà risputata fuori (il famoso rifiuto). In pratica però il ritardo nella chiusura dell’aspirazione è uno di quei parametri che influisce tantissimo sulla potenza del motore agli alti regimi. Con l’aumentare dei giri, è proprio in questa fase che entra la carica in più, quella che teoricamente scapparebbe via resta invece all’interno del carter che si traduce poi all’apertura dei travasi in getti di miscela molto corposi. Fra l’altro quello che tutti chiamano “albero anticipato” spesso rispetto ad un albero originale è più ritardato che anticipato.
Quanto sopra già vi fa capire la differenza fra fasature di aspirazione strette e larghe rispetto al rendimento del motore ai bassi o agli alti.
Fasature di aspirazione ampie agli alti regimi fanno entrare grandi quantità di carica ma ai bassi regimi ne resta poca nel carter e i getti di miscela dall’ammissione e dai travasi sono fiacchi perché quando si chiude l’aspirazione parecchia carica è scappata via, all’interrno del carter pompa c’è poca roba e poca pressione. Aggiungiamo poi carburazione difficile ai bassi, motore che si sporca a minimo, poca guidabilità, alti consumi e scarsa fruibilità del motore nei percorsi lenti.
Specularmente fasature di aspirazione strette danno origine a flussi di aspirazione e travaso vigorosi ma di breve durata che ripuliscono bene e subito il cilindro dai gas combusti con ottimi risultati in termini di resa ai bassi e medi regimi ma pochissima propensione a portarsi ad alti regimi.
La fase di travaso
E’ la fase in cui la miscela aspirata dal pistone in risalita (la nostra siringa) viene poi pompata e travasata nel cilindro durante la discesa del pistone stesso. Quando si aprono i travasi lo scarico è già aperto, buona parte dei gas combusti sono andati già via i gas freschi entrano nel cilindro e quello che resta dei gas combusti viene cacciato via (si spera) dall’arrivo dei gas freschi. La perfetta pulizia del cilindro dai gas combusti è la condizione base per un buon riempimento con i gas freschi. L’altezza dei travasi determina appunto la fasatura di travaso mentre il numero e la larghezza aumenta principalmente la portata. La loro angolazione e distribuzione è studiata in modo da riempire il più possibile di carica il cilindro accompagnando “alla porta” i gas combusti. In realtà a questa fase di pulizia contribuisce in maniera significativa lo scarico a espansione.
La fasatura di travaso è una fase simmetrica rispetto al pmi quindi se l’aumentiamo immancabilmente inizia prima come finisce dopo in maniera simmetrica.
Perché alzare la fasatura di travaso? Perché i travasi (come lo scarico) sono finestre che vengono aperte e richiuse dal movimento del pistone, Se consideriamo il tempo della loro apertura è facile capire che questo è influenzato dal numero dei giri ovvero a bassi regimi resteranno aperti sicuramente di più che agli alti. Ma con l’aumentare dei giri abbiamo bisogno necessariamente di più carica e se il tempo di apertura dei travasi non è adeguato non potremo far arrivare nel cilindro la carica necessaria per aumentare la potenza ed i giri.
La fase di scarico
La fasatura di scarico è la fase in cui il cilindro sputa fuori i gas combusti per lasciar posto alla carica di gas freschi ovvero la miscela aria-benzina. Immaginiamo anche qui il nostro motore spento e abassiamo la pedivella. Il pistone scende, si aprono i travasi, entra la miscela, il pistone sale, chiude travasi e scarico, comprime, avviene lo scoppio. Il pistone scende, si apre la luce di scarico e i gas iniziano ad uscire, in seguito si aprono anche i travasi, arrivano i gas freschi che spingono via i gas combusti rimasti, il pistone risale, chiude travasi e scarico, comprime, scoppia e potete togliere il piede dalla pedivella.
La durata della fase di scarico ovvero la sua altezza è quella che determina il regime di potenza massima. A fasi basse di scarico tipo 160-170 gradi corrispondono regimi di potenza massima intorno ai 6-7000 giri, con pochi gradi in più diciamo 180 si inizia a salire a botte di 1000 e più giri fino a motori che girano a 13-14.000 e più giri che viaggiano con fasi di scarico intorno ai 195-200 gradi.
Come vedete, anche qui fasatura stretta significa ottima resa ai bassi e poco allungo, fasatura larga invece porta ad alti giri, allungo notevole ma motore vuoto sotto certi regimi. Nelle moto 2t il problema è stato risolto con luci di scarico ad altezza variabile quindi ai bassi regimi hanno ad esempio 160 gradi di scarico per aumentare progressivamente l’altezza proporzionalmente all’aumentare dei giri.
Perché l’altezza influenza il regime di potenza massima? Innanzi tutto perché il tempo in cui la luce resta aperta (in secondi o meglio millisecondi) diminuisce con l’aumentare dei giri quindi salendo con i giri arriveremo ad un regime in cui la carica che entra non aumenta più perché non c’è il tempo di travasarla e di sputare fuori i gas combusti per lasciare posto ai freschi e quindi il motore non ha più la forza di andare oltre quel regime. Se aumentiamo il tempo di apertura ovvero la fasatura di scarico (e necessariamente anche quella di travaso) avremo possibilità di far girare il motore ad un regime maggiore. Inoltre aprendo prima la luce di scarico i gas combusti vanno prima nell’espansione a fare il loro sporco lavoro, (anche quì un’altra bella siringa, poi la vediamo in un topic apposito ) ovvero aiutare il motore ad aspirare più carica ed a comprimerla meglio. Essendo la fase di scarico simmetrica, se si apre prima "x" gradi automaticamente si chiude "x" gradi dopo e come sempre con fasature ampie si hanno le solite perdite di carica e di potenza ai bassi regimi.